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Abstract—To begin with, the classification of chest X-rays is
vital for automatically diagnosing respiratory diseases such as
COVID-19, pneumonia, and other abnormalities. In our sys-
tem, we operated custom convolutional neural networks (CNNs)
and Vision Transformers (ViTs), including Tiny-ViT, Swin-
Transformer, FocalNet, and VOLO, to compare their effectiveness
and for the classification task under limited data constraints
in the Covidl9, Pneumonia, and Normal Chest X-Ray Images
dataset. Moreover, advanced data augmentation and regulariza-
tion techniques have been used to improve the strength and
inference of our system. Consequently, we attained an accuracy of
98.29% on the custom CNN and 98% on the Vision transformer
model VOLO, outperforming all other models. In addition, our
selection of custom CNN and ViT models (VOLO-D1) was based
on their intense feature extraction abilities and usefulness for
transfer learning. Subsequently, we used FocalNet to replace self-
attention (SA) with a focal modulation mechanism in our system’s
vision. Furthermore, we reached 98 %, surpassing the state of art
images.

Index Terms—disease, classification, CNN, ViT, model

I. INTRODUCTION

Respiratory diseases like COVID-19 and pneumonia pose a
substantial global health burden, for which early and proper
diagnosis is essential. The World Health Organization stated
about the outbreak of the public health emergency on 30
January 2020 [1], and levied the attack as a pandemic on 11
March [2]. Its symptoms range from symptomless to deadly,
including fever, painful throat, night cough, and tiredness.
[3]. Convolutional neural networks (CNNs) have shown out-
standing results in fixing various machine-learning topics with
multiple layers of architecture. In our system, CNNs and vision
transformer models play a crucial role. Consequently, this
process emphasizes the need for computational aids and strate-
gies to expand artificial intelligence’s image recognition and
classification field [4]. Meanwhile, vision transformers offer
self-attention tools, a novel approach to our image analysis by
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Fig. 1. Chest X-ray images from dataset
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capturing international contextual information. Figure 1 shows
the image classification of Normal, COVID-19-infected, and
pneumonia-infected with the X-ray image of the Chest.

In this project, we proposed an Al-powered system for
classifying chest X-ray images into three categories, "COVID,”
"PNEUMONIA,” and "NORMAL,” using the custom CNN
and transformer models. The following are the contributions
of our project :

o Integrating CNNs and Vision Transformers in classi-
fying medical images: Our project merges with CNNs
and vision transformers to achieve high classification
accuracy and strengthen state-of-the-art architecture.

o Ensuring Reliability with Data Preprocessing and
Augmentation: Our system provides reliable perfor-
mance across diverse datasets by applying preprocessing
and data augmentation.

o Bridging Investigation and Real-World Applications



in Healthcare: By bridging the gap between academic
research and practical life applications in healthcare.

Our research is organized as Section II with a Literature
review, Section III with Proposed System, Section IV with
Model Architecture, and Section V with Results and Analysis.
and Section VI, with the conclusion and future scope

II. LITERATURE REVIEW

Regarding the customized convolutional neural network
(CNN), S. Ashwini et al. [5], propose a multi-type classifica-
tion of some diseases, such as lung opacity, tuberculosis, pneu-
monia, and COVID-19. They used two models, Classification-
1 and Classification-2, to detect lung diseases and different
types of lung diseases. They achieved 99.82% accuracy in
Classification-1 and 98.75% accuracy in Classification-2. This
will help to recognize and treat patients more effectively. Con-
sequently, Mohammad Mousavi et al. [6], offer an automatic
detection model for COVID-19 operating the respiratory sound
and the medical image based on the Internet of Health Things
(IoHT). Notably, they used the sound of coughing to detect
COVID-19-affected patients, which achieved an accuracy of
94.999%. Among the models, they achieved an amazing result
of 99.414% from InceptionResNetV2. Though it can diagnose
the initial status of COVID-19, their system might also include
other lung diseases. Likewise, Ibnu Utomo Wahyu Mulyono et
al. [7], provide different arrangements of convolutional neural
networks (CNN) used for image classification tasks in COVID-
19. They analyzed the performance of VGG, ResNet-50, and
classic CNN architectures with various datasets. Among them,
the ResNet-50 architecture achieves the highest performance
with an accuracy of 96.63%. Puji Dwi Rinanda et al. [§]
also presented a practical approach to automatically recognize
and classify mango leaf diseases by the Convolutional Neural
Network (CNN). However, they performed a comparative
analysis of the accuracy between VGG16, CNN, and Incep-
tionV3. Among the three models, VGG16 outperformed with
an accuracy of 96.87%. Despite impressive results, they might
improve their dataset to improve model accuracy. Saravanan
Srinivasan et al. [9], highlighted a deep convolutional neural
network (CNN) to improve the early detection of brain tumors.
Again, for the different classes of classification tasks, they
offered three separate CNN models with an accuracy of
99.53%, 93.81%, and 98.56%, respectively. Md Nurul Absur et
al. [4] illustrates the need to analyze digital images comparable
to digital media pictures by leveraging CNN for the computer
system. They achieved 98.71% accuracy using the MNIST
dataset without any bias. As a result, Deep CNNs require less
prior work than other image-processing algorithms.

Based on the transformer model, Asmi Sriwastawa et al.
[10] CNNs have been the most prevalent image classification
mechanism. They achieved the finest transformer-based clas-
sifier, with 91.57% test accuracy on the BreakHis on MaxViT.
Subsequently, Attiapo Acybah Morel Omer et al. [11], intro-
duces an approach to classify images operating Vision Trans-
former (ViT) architecture. Additionally, ViT emerged as an

ideal option for CNN for image analysis tasks with improved
performance, which can process image patches instantly with-
out depending on spatial orders and enhance computational
efficiency. Likewise, Mouhamed Laid ABIMOULOUD et al.
[12] highlighted three low-weight systems on attention and
convolution techniques: ViT, MVIT, and CCT. They used
the BreakHis dataset for binary and multi-classification of
breast cancer subtypes, resulting in fewer parameters and lower
training time while achieving accurate breast tumor classifica-
tion. Among the models, VIT obtains the highest accuracy of
98.64% and was compared with state-of-the-art models using
the same dataset, which can minimize computational training
resources and decision time. In this paper, Verren Angelina
Saputra et al. [13], compare ResNet152 as the best CNN
model for classifying skin diseases with ViT. They used the
HAM10000 dataset with 10,015 images, where ViT achieved
98.28% accuracy, more than ResNet152’s 96.70%. Though
ViT proved superior to Resnet50, it has major drawbacks in
potential overfitting.

III. PROPOSED SYSTEM

The study offers an image classification framework by
comparing the arrangement of custom convolutional neural
networks (CNN) and transformer-based architectures for the
X-ray images utilizing custom CNN and transformer-based
models, differentiating between COVID-19, pneumonia, and
typical chest X-ray images employed. The image has been
resized into 256x256 pixels for the custom CNN model and
224x224 pixels for the vision transformer model, which has
been strategically put between every pair of convolutional
coatings with a max-pooling layer of 2x2 to enhance quality
extraction and decrease dimensionality. Figure 2, shows the
method from the pre-trained model to model result visualiza-
tion with all the steps by random flipping, rotation, zoom,
brightness, and contrast adjustments. Lastly, we train and
evaluate our system with the custom CNN, FocalNet, and
Vision transformer models

Dataset: The dataset, which contains chest X-ray images,
has been classified into COVID-19, NORMAL, and PNEU-
MONIA. Firstly, the images are organized in class-specific
directories, split into 1626 pictures for "COVID”, 1802 images
for "NORMAL”, and 1800 for the "PNEUMONIA” dataset.
In our system, all the images are preprocessed and resized to
256x256 in the PNG form. Consequently, to improve gener-
ality, to form a vigorous foundation, and to detect COVID-19
for the classification method, each image undergoes processing
and augmentation [14].

Image Preprocessing: Both CNN and ViT frameworks
have been implemented to confirm that the data provided
in the models is clean, constant, and optimized for train-
ing and preprocessing. For the custom CNN model, images
were resized to 256x256 pixels, and the pixel values were
standardized to a range of [0,1] using rescaling processes.
However, the images were resized to 224x224 pixels for Vision
Transformer models to align with common pre-trained model
measurements. Consequently, mean and standard deviation
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Fig. 2. Workflow of the proposed hate speech detection system

normalization was performed from the ImageNet dataset, and
pictures were transformed into tensors to confirm compatibility
and efficient GPU enumeration. As a result, both frameworks
assured consistency across input data, enhanced model con-
fluence.

Image Loading: Image loading was streamlined using
the TensorFlow directory API for our custom CNN model,
enabling automated labeling, efficient batch processing, and
reduced training time by loading data asynchronously. In
contrast, for the ViT model, a custom dataset class was
implemented in PyTorch for manual image loading. Both
methods support efficient data handling, batch processing, and
prefetching to optimize training time. To ensure consistency
in image dimensions and quality, images were loaded using
the Python Imaging Library (PIL), converted to RGB format,
and passed through resizing and normalization.

Data Augmentation: For instance, data augmentation plays
an excellent role in increasing the diversity in the chest X-
ray images. In our system, Random Flipping, Random Zoom,
Random Brightness, and Random Contrast have been used by
+20%,+20%, +10%, and £10% to flip the images horizontally
and vertically, to alter the magnification, to adjust the image’s
brightness and to handle differences in imaging equipment
respectively. Table 2 shows the augmentation techniques that
introduce random flipping, rotation, zoom, brightness, and
contrast adjustments, with descriptions and parameters.

TABLE I
IMAGE AUGMENTATION TECHNIQUES AND PARAMETERS
Technique Description Parameters
o Flips images horizontally Horizontal and
Random Flipping | and vertically to account for .
. . Vertical
orientation
Random Rotates images within £20% | £20° rotation
Rotation to handle misalignments angle
Random Zoom Zooms in/out to simulate Height and
different magnification levels | Width +20%
Random Adjusts brightness to mimic :l:.l()%
Brightness varying lighting conditions brl'ghtness
adjustment
Changes contrast to address +10% contrast
Random Contrast | . f . .
Intensity variations adjustment

Data Set Allocation: For instance, the dataset is separated
into training, validation, and testing with an 80:10:10 ratio.
Moreover, 80% of the training dataset’s images were used to
optimize the model’s weight. During the training, Validation
data, with 10% of the dataset, is employed to monitor over-
fitting and to fine-tune hyperparameters. To ensure that final
evaluations were completed, the remaining 10% were reserved
for testing.

IV. MODEL ARCHITECTURES

Custom CNN Model:Our system was built on the custom
CNN model with an attribute extraction and classification
channel. For the input sizes with 256x256 pixels, our system
resized the layer and then utilized the convolutional layers
with kernel measures of (3x3), tracking batch normalization
and ReLU activation processes.

Additionally, to improve the model’s capability to generalize
the unrecognized data, L2 regularization was used for the
dense layers with 0.001. It employed the Adam optimizer,
using data covering, shuffling, and prefetching with Tensor-
Flow’s autotune component to optimize the training further.
Figure 3 shows the architecture diagram for the Custom CNN.

VisionTransformers (ViT): Our system used transformer
models like Tiny ViT, Swin Transformer, VOLO, and FocalNet.
Each brought individual strengths to the classification task
as our dataset experienced extensive preprocessing, including
image resizing to 224x224 pixels, normalization, and data
augmentation techniques like random cropping, horizontal
flipping, and brightness adjustments. We separated the pictures
into smaller image patches using patch embedding coatings
per transformer model. These patches were then linearly pro-
jected into token embeddings, comprising sequences provided
into the transformer layers. In addition, our system allows
the network to concentrate on different parts of the image
simultaneously, featuring numerous self-attention heads. Fi-
nally, multi-layer perceptron (MLP) heads are employed with
softmax activation to produce probabilities for the three target
categories. Lastly, the AdamW optimizer with a learning speed
of le-4 and a significant deterioration of le-4 was utilized for
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Fig. 4. Architecture Diagram for Transformer model.

model optimization. Figure 4 shows the architecture diagram
for the Transformer model.

Comparison of Models Architecture: The custom CNN
model is an interpretable architecture with completely at-
tached layers. Additionally, we operated the swim transformer
to counteract local and global feature learning with 28M
parameters. Besides that, FocalNet, with 19 M parameters,
has been used to achieve a balanced focus with increased
computational efficiency. As a result, each model illustrates a
trade-off between intricacy, efficiency, and quality extraction
abilities. Table 4 shows the architectures executed in this
project with the Convolutional Neural Network (CNN), the
Vision Transformer (ViT), and the FocalNet Model highlight-
ing their critical features and individual characteristics.
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V. RESULT AND ANALYSIS

Model Performance: For instance, we used Convolutional
Neural Networks (CNNs) and advanced Vision Transform-
ers (ViTs) to classify chest X-ray images into "COVID,” ”
NORMAL,” and "PNEUMONIA” categories. Sequentially, we
got the CNN model results with a precision of 0.9829, a
recall of 0.9829, and an fl-Score of 0.9829. Additionally,
the TinyViT model achieved a precision of 0.9640, a recall
of 0.9640, and an f1-Score of 0.9640. In addition, the Swin
Transformer was followed by scores of 0.9722 (Precision),
0.9720 (Recall), and 0.9721 (F1-Score). Among all the models,
the VOLO architecture emerged as the best-performing model
with a precision of 0.9802, recall of 0.9800, and an f1-Score
of 0.9800, showcasing its effectiveness in both the training and
testing phases. Besides that, we obtained a precision of 0.9769,
a recall of 0.9760, and an f1-Score of 0.9761 in the FocalNet
model, confirming its robustness in complex image classifi-
cation tasks. Across all evaluation metrics, our performance
highlights consistent performance with reliability in real-world
medical diagnostic applications. Figure 5 represents a visual
representation of the Precision, Recall, and Fl-score metrics
across all evaluated models.

Performance Visualization: In Figure 6, the graph shows
us the training and validation accuracy and loss curves over
20 epochs for the custom CNN model. This graph shows us
the confluence of the model achieving high training accuracy
with minimal overfitting, where the close alignment of training
and validation curves indicates that the model generalizes well
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to unseen data. Furthermore, minor fluctuations in validation
accuracy and loss are observed around epoch 12, likely due
to slight overfitting or noise. The figures 6 (a) and (b) show
the training accuracy, validation accuracy, training loss, and
validation loss graphs for custom CNN. In Figure 7, the graph
shows us the training and validation accuracy and loss curves
over 50 epochs for the ViT model (VOLO-DI1). In Figure,
the graph shows us the training and validation accuracy and
loss curves over 50 epochs for the ViT model (VOLO-DI1).
Consequently, in the accuracy curve of the graph, the training
accuracy improves consistently, stabilizing around 98%. In
contrast, the validation accuracy shows slight changes in the
early epochs but eventually aligns closely with the training
accuracy, reaching approximately 96%. The loss curve of
graph B demonstrates a constant decrease in training loss,
indicating effective learning. In contrast, the validation loss
follows a similar trend, stabilizing around 0.1 after initial
instabilities with good generalization and minimal overfitting.
Hence, it shows substantial accuracy, effectiveness, and low
loss on the graph. Figures 7 (a) and (b) show the training and
validation loss and accuracy for the ViT model (VOLO-D1).

Training and Validation Accuracy Training and Validation Loss

~\ "

— Training Accurac y
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Fig. 6. Custom CNN training and validation accuracy and loss.

Classification Result: For the PNEUMONIA, 175 instances
were correctly classified as PNEUMONIA, three instances
were misclassified as "NORMAL,” and 2 instances were
misclassified as “COVID.” However, for the "NORMAL”
class, 177 instances were correctly classified as "NORMAL,”
two were misclassified as "PNEUMONIA,” and one instance
was misclassified as "COVID.” Moreover, for the "COVID”

Training and Validation Loss

(a) (b)

Fig. 7. ViT model (VOLO-DI1) training and validation accuracy and loss.

class, 182 instances were correctly classified as "COVID,” two
instances were misclassified as "NORMAL,” and O instances
were misclassified as "PNEUMONIA.” Overall, the Custom
CNN model performs very well in our system, with mini-
mal misclassifications and a small number of "NORMAL”
misclassified as "PNEUMONIA.” The confusion matrix for
Custom CNN is illustrated in Figure 8. Like the custom CNN,
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Fig. 8. Confusion matrix for the custom CNN and VOLO-d1 model.

the confusion matrix of the VOLO-D1 Model performed well.
However, for the "PNEUMONIA” class, 176 instances were
correctly classified as "PNEUMONIA,” one was misclassified
as "NORMAL,’” and one was misclassified as "COVID.”
Furthermore, for the NORMAL class, 150 instances were cor-
rectly classified as NORMAL, one instance was misclassified
as PNEUMONIA, and five instances were misclassified as
”COVID.” Besides that, in the "COVID” class, 164 instances
were correctly classified as "COVID,” one misclassified as
”"NORMAL,” and one misclassified as "PNEUMONIA.” The
confusion matrix for the VOLO-D1 Model is illustrated in
Figure 9.

Significantly, almost all of the images were correctly clas-
sified as "PNEUMONIA”, ” COVID” and "NORMAL” as
shown in Figure 10. Notably, we used a custom CNN model
to classify the diseases.

Accuracy Comparison Table: Our system has five dif-
ferent deep learning architectures: Sequential CNN, TinyViT,
Swin Transformer, VOLO, and FocalNet.However, we trained,
validated, and tested our dataset categorized into "COVID”,
"NORMAL,” and "PNEUMONIA” classes.

In the following table, we have demonstrated the strong
interpretation of the custom CNN model with a training
accuracy of 98.46%, validation accuracy of 98.37%, and test
Accuracy of 98.29%, which offers to extract meaningful image
features. However, TinyViT achieved a training accuracy of
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98.72%, validation accuracy of 96.40%, and test accuracy
of 96.40%. Again, Swin Transformer followed closely with
98.35%, 97.20%, and 97.20%, respectively. Consequently, the
VOLO model excelled with a Train Accuracy of 98.43%,
validation accuracy of 98.00%, and test accuracy of 98.00%,
outperforming all other models across all datasets. Moreover,
FocalNet achieved an excellent result with train accuracy of
99.32%, validation accuracy of 97.60%, and test Accuracy of
97.60% for medical image classification tasks. In conformity
with our result, we can say that CNN remains a steadfast ar-
chitecture, whereas transformer-based models like VOLO and
FocalNet offer exceptional accuracy and inference capabilities.
Table 5 compares the results of various models executed in our
system.

TABLE III
TRAIN, TEST, AND VALIDATION ACCURACY.

Model Train Accuracy (%) Validation Accuracy (%) Test Accuracy (%) [10]
Sequential CNN 98.46 98.37 98.29
TinyViT 98.72 96.40 96.40
Swin Transformer 98.35 97.20 97.20
VOLO 98.43 98.00 98.00
FocalNet 99.32 97.60 97.60

VI. CONCLUSION

In this paper, we offer an approach for classifying chest X-
ray images into three categories: "COVID,” "PNEUMONIA,”
and "NORMAL” where it can bridge the crucial gap in

medical diagnostics. Consequently, our system used custom
CNN and transformer models such as the TinyViT, Swin
Transformer, VOLO, and FocalNet for automated disease de-
tection, ensuring significant accuracy and constant outcomes.
Among the transformer models, VOLO emerged as the most
promising, achieving the highest accuracy of 98%. In contrast,
the sequential CNN model attained an accuracy of 98.29%,
which can control the critical challenges in medical diag-
nostics. Additionally, FocalNet achieved 98%, outperforming
other models by the state of art images. We aim to expand the
application by merging multiple models to enhance accuracy
on other medical imaging tasks.
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